Energieausweis für Wohngebäude

OIB-Richtlinie 6 Ausgabe: März 2015

BEZEICHNUNG WHA Guntramsdorf - Haus 5 Fertigstellung

Top 9 bis 15 Gebäude(-teil) Baujahr 2020

Nutzungsprofil Mehrfamilienhaus

Straße Mühlgasse 10 Katastralgemeinde Guntramsdorf

Letzte Veränderung

PLZ/Ort KG-Nr. 16111 2353 Guntramsdorf Grundstücksnr. Seehöhe 188 m

SPEZIFISCHER STANDORT-REFERENZ-HEIZWÄRMEBEDARF, STANDORT-PRIMÄRENERGIEBEDARF, STANDORT-KOHLENDIOXIDEMISSIONEN UND GESAMTENERGIEEFFIZIENZ-FAKTOR HWB Ref,SK CO2_{SK} f GEE

HWB Ref: Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der Warmwasserwärmebedarf ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim **Heizenergiebedarf** werden zusätzlich zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteitung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

HHSB: Der Haushaltsstrombedarf ist als flächenbezogener Defaultwert festgelegt. Er entspricht in etwa dem durchschnittlichen flächenbezogenen Stromverbrauch eines österreichischen Haushalts.

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den Haushaltsstrombedarf, abzüglich allfälliger Endenergieeträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

fgee: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der **Primärenergiebedarf** ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB ern.) und einen nicht erneuerbaren (PEB n.ern.) Anteil auf.

CO2: Gesamte dem Endenergiebedarf zuzurechnende **Kohlendioxidemissionen**, einschließlich jener für Vorketten.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfakte Primärenergie und Kohlendioxidemissionen ist 2004 - 2008 (Strom: 2009 - 2013), und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Wohngebäude

OIB-Richtlinie 6 Ausgabe: März 2015

	**				
GEB	AII	DEK	ENIN	DAT	EN
GED	MU	DEN		UMI	

Brutto-Grundfläche	749 m²	charakteristische Länge	2,01 m	mittlerer U-Wert	0,24 W/m ² K
Bezugsfläche	599 m²	Heiztage	196 d	LEK _T -Wert	18,2
Brutto-Volumen	2 447 m ³	Heizgradtage	3338 Kd	Art der Lüftung	Fensterlüftung
Gebäude-Hüllfläche	1 218 m ²	Klimaregion	NSO	Bauweise	schwer
Kompaktheit (A/V)	0,50 1/m	Norm-Außentemperatur	-12,4 °C	Soll-Innentemperatur	20 °C

ANFORDERUNGEN (Referenzklima)

Referenz-Heizwärmebedarf	k.A.	HWB Ref,RK	31,2 kWh/m²a
Heizwärmebedarf		HWB _{RK}	31,2 kWh/m²a
End-/Lieferenergiebedarf	k.A.	E/LEB RK	72,3 kWh/m²a
Gesamtenergieeffizienz-Faktor	k.A.	f _{GEE}	0,71
Erneuerbarer Anteil	k.A.		

WÄRME- UND ENERGIEBEDARF (Standortklima)

Referenz-Heizwärmebedarf	22 434 kWh/a	HWB Ref,SK	30,0 kWh/m²a
Heizwärmebedarf	22 434 kWh/a	HWB SK	30,0 kWh/m²a
Warmwasserwärmebedarf	9 566 kWh/a	WWWB	12,8 kWh/m²a
Heizenergiebedarf	41 029 kWh/a	HEB SK	54,8 kWh/m²a
Energieaufwandszahl Heizen		e AWZ,H	1,28
Haushaltsstrombedarf	12 299 kWh/a	HHSB	16,4 kWh/m²a
Endenergiebedarf	53 328 kWh/a	EEB _{SK}	71,2 kWh/m²a
Primärenergiebedarf	71 909 kWh/a	PEBSK	96,0 kWh/m²a
Primärenergiebedarf nicht erneuerbar	64 323 kWh/a	PEB n.ern.,SK	85,9 kWh/m²a
Primärenergiebedarf erneuerbar	7 586 kWh/a	PEB em.,SK	10,1 kWh/m²a
Kohlendioxidemissionen	13 100 kg/a	CO2 _{SK}	17,5 kg/m²a
Gesamtenergieeffizienz-Faktor		f GEE	0,71
Photovoltaik-Export		PV _{Export,SK}	

ERSTELLT

GWR-Zahl		ErstellerIn	DiplIng. (FH) Gerhard Novak
Ausstellungsdatum	08.07.2020		Erzherzogin Isabelle-Straße 66 2500 Baden
Gültigkeitsdatum	07.07.2030	Under school B	

DIPL-ING EH GERHARD NOVAK INGENEURBÜRD FÜR BAUPHYSIK 2500 Boden, Erzh. Isabelle-Str. 66

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

Datenblatt GEQ

WHA Guntramsdorf - Haus 5_Fertigstellung

Anzeige in Druckwerken und elektronischen Medien

Ergebnisse bezogen auf Guntramsdorf

HWB_{SK} 30 f_{GEE} 0,71

O a la Vanad	La alla Alaba	1-4 741
Genaud	ledaten	 Ist-Zustand

Brutto-Grundfläche BGF 749 m² Konditioniertes Brutto-Volumen 2 447 m³ Gebäudehüllfläche A_B 1 218 m²

Ermittlung der Eingabedaten

Geometrische Daten: siehe Projektanmerkungen Bauphysikalische Daten: siehe Projektanmerkungen, Haustechnik Daten: siehe Projektanmerkungen,

Ergebnisse Standortklima (Guntramsdorf)

Transmissionswärmeverluste Q _T		26 938	kWh/a
Lüftungswärmeverluste Q _V	Luftwechselzahl: 0,4	19 220	kWh/a
Solare Wärmegewinne η x Q s		9 716	kWh/a
Innere Wärmegewinne η x Q _i	schwere Bauweise	13 657	kWh/a
Heizwärmebedarf Q _h		22 434	kWh/a

Ergebnisse Referenzklima

Transmissionswärmeverluste Q _T	27 649 kWh/a
Lüftungswärmeverluste Q _V	19 727 kWh/a
Solare Wärmegewinne η x Q s	9 784 kWh/a
Innere Wärmegewinne ηxQ_{i}	13 958 kWh/a
Heizwärmebedarf Q _h	23 325 kWh/a

Haustechniksystem

Raumheizung: Flüssiger oder gasförmiger Brennstoff (Gas)

Warmwasser: Kombiniert mit Raumheizung

Lüftung: Fensterlüftung, Nassraumlüfter vorhanden

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH www.geq.at
Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6 / Unkonditionierte
Gebäudeteile vereinfacht nach ON B 8110-6 / Wärmebrücken pauschal nach ON B 8110-6 / Verschattung vereinfacht nach ON B 8110-6

Verwendete Normen und Richtlinien:

ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6 / ON H 5055 / ON H 5056 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / ON EN 12831 / OIB-Richtlinie 6 Ausgabe: März 2015

Anmerkung:

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Projektanmerkungen

WHA Guntramsdorf - Haus 5 Fertigstellung

Allgemein

BERECHNUNGSGRUNDLAGE:

- Bestandspläne vom 11.02.2020, Stand 21.02.2020, erstellt von Josef Weichenberger architects + Partner:
- -- BP-JWA-AR-G-DA mit Anmerkung "Schriftliche Freigabe seitens GU und ÖBA über die Ausführung nach Plan notwendig"
- -- BP-JWA-AR-G-EGUG mit Anmerkung "Schriftliche Freigabe seitens GU und ÖBA über die Ausführung nach Plan notwendig"
- -- BP-JWA-AR-G-0102 mit Anmerkung "Schriftliche Freigabe seitens GU und ÖBA über die Ausführung nach Plan notwendig"
- -- BP-JWA-AR-S-AH mit Anmerkung "Schriftliche Freigabe seitens GU und ÖBA über die Ausführung nach Plan notwendig"
- -- BP-JWA-AR-A-NSOW mit Anmerkung "Schriftliche Freigabe seitens GU und ÖBA über die Ausführung nach Plan notwendig"
- Bestandspläne vom 11.02.2020, Stand 05.03.2020, erstellt von Josef Weichenberger architects + Partner:
- -- BP-JWA-AR-G-EGUG

Bauteile

GRUNDLAGEN:

- siehe nachstehend unter

"Bauteile"

Fenster

GRUNDLAGEN:

- siehe nachstehend unter "Fenster"

Geometrie

ERLÄUTERUNGEN:

- Das Gebäude besteht aus 3 oberirdischen Geschoßen, die über der Tiefgarage liegen. Der westseitige Fahrradabstellraum ist unbeheizt.

Haustechnik

ANGABEN DES AUFTRAGGEBERS:

- Email vom 20.11.2013 vom Büro Schulterer
- Telefonat vom 20.11.2013 mit Büro Schulterer: Änderung auf Brennwertgerät, Betriebsweise gleitend

ANSATZ IM ENERGIEAUSWEIS:

- Raumheizung:
- -- gebäudezentral
- -- Gas-Brennwertgerät 120 kW, im nicht konditionierten Bereich
- -- mit Modulierung, gleitender Betrieb
- -- Radiatoren, Systemtemperatur 60°C/35°C, Einzelraumregelung mit Thermostatventilen
- -- 1000 l Pufferspeicher, im nicht konditionierten Bereich, Anschlussteile gedämmt

Projektanmerkungen WHA Guntramsdorf - Haus 5_Fertigstellung

- Warmwasser:
- -- gebäudezentral, kombiniert mit Raumheizung (Anmerkung: die eigentliche Warmwasserbereitung erfolgt dezentral über Übergabestationen je Wohneinheit)

Die Angaben zum Pufferspeicher und der Nennwärmleistung der Gasheizung wurden auf Basis der Bruttogeschoßflächen auf die Gebäude aufgeteilt.

Heizlast Abschätzung

WHA Guntramsdorf - Haus 5_Fertigstellung

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berechnungsblatt

Bauherr Planer / Baufirma / Hausverwaltung

heimbau Gemeinn. Bau-, Wohnungs- u.

 $Siedlungsgenossenschaft\ mbH.$

Tannengasse 20

1150 Wien

Tel.: Tel.:

Norm-Außentemperatur: -12,4 °C Standort: Guntramsdorf
Berechnungs-Raumtemperatur: 20 °C Brutto-Rauminhalt der

Temperatur-Differenz: 32,4 K beheizten Gebäudeteile: 2 446,74 m³

Gebäudehüllfläche: 1 217,63 m²

Bauteile	Fläche	Wärmed koeffizient	Korr faktor	Korr faktor	Leitwert
	Α	U	f	ffh	
	[m²]	[W/m ² K]	[1]	[1]	[W/K]
AW01 AW01 Außenwand WDVS HLZ	165,70	0,137	1,00		22,66
AW02 AW02 Feuermauer	300,62	0,165	1,00		49,62
AW03 AW01.1 Außenwand WDVS EG Durchfahrt	48,26	0,275	1,00		13,27
AW06 AW04 Außenwand WDVS STB	2,82	0,148	1,00		0,42
DD01 FB01 Decke über Außenluft H5-H6	61,19	0,164	1,00		10,04
DD02 FB01.1 Decke über Außenluft H5-H6_UZ_x01	8,00	0,185	1,00		1,48
FD03 FD02 Flachdach H5-H6_GFDD	278,09	0,097	1,00		26,97
FE/TÜ Fenster u. Türen	116,26	0,921			107,06
ID01 FB03 Decke über Tiefgarage H5-H6	193,94	0,182	0,80		28,20
ID02 FB05 Decke über unbeh. Räumen im EG	16,40	0,245	0,70		2,82
IW01 IW01 Trennwand zu Fahrrad/KIWA	26,36	0,320	0,70		5,91
Summe OBEN-Bauteile	279,53				
Summe UNTEN-Bauteile	279,53				
Summe Außenwandflächen	517,39				
Summe Innenwandflächen	26,36				
Fensteranteil in Außenwänden 17,9 %	112,67				
Fenster in Innenwänden	2,15				
Fenster in Deckenflächen	1,44				
Summe			[W/I	<]	268
Wärmebrücken (vereinfacht)			[W/I	(]	28
Transmissions - Leitwert L _T			[W/H	(]	296,87
Lüftungs - Leitwert L _V			[W/	(]	211,81
Gebäude-Heizlast Abschätzung	Luftwechsel =	: 0,40 1/h	[kV	V]	16,5
Flächenbez. Heizlast Abschätzung (749	m²)	[W/	m² BGI	F]	22,01

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die exakte Dimensionierung ist eine Heizlast-Berechnung nach ÖNORM H 7500 erforderlich.

U-Wert Berechnung

Projekt:	WHA Guntramsdorf - Haus 5_F	ertigstellung	Blatt-Nr.:	1
Auftraggeb	^{er} heimbau Gemeinn. Bau-, Wohi	nungs- u.	Bearbeitungsnr.:	1246
Bauteilbeze AW01 Auß	eichnung: enwand WDVS HLZ	Kurzbezeichnung: AW01		
Bauteiltyp: Außenwan			1	A
Wärmedur	chgangskoeffizient berechnet nach ÖN	ORM EN ISO 6946		
	U - Wert	0,14 [W/m²K]		
				M 1 : 10

					IVI I : IU
Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Innenputz	В	0,015	0,700	0,021
2	HLZ POROTHERM 20-40 Objekt PLAN (224 kg/m²)	В	0,200	0,303	0,660
3	Kleber	В	0,005	0,000	
4	EPS-F Dämmplatte, WL=0,031 W/mK	В	0,200	0,031	6,452
5	ggf. Dübel versenkt	В		0,000	
6	Spachtelung diffusionsoffen/ Textilglasgewebe	В	0,005	0,800	0,006
7	Silikat-/Silikonharzputz (geprüftes Putzsystem)	В	0,002	0,800	0,003
Dic	ke des Bauteils [m]		0,427		
Sur	mme der Wärmeübergangswiderstände R _{si} + R	se		0,170	[m²K/W]
Wä		$R_{si} + \sum R_t + F$	₹ _{se}	7,312	[m²K/W]
Wä	rmedurchgangskoeffizient U = 1 /	R _T		0,14	[W/m ² K]

U-Wert Berechnung

rojekt: WHA Guntramsdorf - Haus 5_Fertigstellung		Blatt-Nr.:	2
Auftraggeber heimbau Gemeinn. Bau-, Wohn	ungs- u.	Bearbeitungsnr.:	1246
Bauteilbezeichnung: AW01.1 Außenwand WDVS EG Durchfahrt	Kurzbezeichnung: AW03		
Bauteiltyp: bestehend Außenwand		ı	Α
Wärmedurchgangskoeffizient berechnet nach ÖNG	ORM EN ISO 6946		
U - Wert	0,27 [W/m²K]		
		М	1 : 10

					IVI 1 . 10		
Konstruktionsaufbau und Berechnung							
	Baustoffschichten		d	λ	$R = d / \lambda$		
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]		
1	Innenputz	В	0,015	0,700	0,021		
2	HLZ POROTHERM 20-40 Objekt PLAN (224 kg/m²)	В	0,200	0,303	0,660		
3	Kleber	В	0,005	0,000			
4	MW-PT Putzträgerplatte, WL=0,036 W/mK	В	0,100	0,036	2,778		
5	ggf. Dübel versenkt	В		0,000			
6	Spachtelung diffusionsoffen/ Textilglasgewebe	В	0,005	0,800	0,006		
7	Silikat-/Silikonharzputz (geprüftes Putzsystem)	В	0,002	0,800	0,003		
Dic	ke des Bauteils [m]		0,327				
Sui	mme der Wärmeübergangswiderstände R _{si} +	R _{se}		0,170	[m²K/W]		
Wä	rmedurchgangswiderstand R _T = 1	$R_{si} + \sum R_t + F$	₹se	3,638	[m²K/W]		
Wä	rmedurchgangskoeffizient U = 1	/ R _T		0,27	[W/m²K]		

U-Wert Berechnung

Projekt:	WHA Guntramsdorf - Haus 5_I	Fertigstellung	Blatt-Nr.:	3
Auftraggebe	er heimbau Gemeinn. Bau-, Woh	nungs- u.	Bearbeitungsnr.:	1246
Bauteilbeze	•	Kurzbezeichnung: AW02		
Bauteiltyp: I				A
Wärmedur	chgangskoeffizient berechnet nach ÖN	ORM EN ISO 6946		
	U - Wert	0,17 [W/m²K]		
				M 1 : 10

					101 1 . 10		
Konstruktionsaufbau und Berechnung							
	Baustoffschichten		d	λ	$R = d / \lambda$		
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.		
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]		
1	Innenputz	В	0,015	0,700	0,021		
2	POROTHERM 20-40 SBZ Plan (347 kg/m²)	В	0,200	0,660	0,303		
3	Kleber	В	0,005	0,000			
4	MW-PT Putzträgerplatte, WL=0,036 W/mK	В	0,200	0,036	5,556		
5	ggf. Dübel versenkt	В		0,000			
6	Spachtelung diffusionsoffen/ Textilglasgewebe	В	0,005	0,800	0,006		
7	Silikat-/Silikonharzputz (geprüftes Putzsystem)	В	0,002	0,800	0,003		
Dic	ke des Bauteils [m]		0,427				
Sui	mme der Wärmeübergangswiderstände R	si + R se		0,170	[m²K/W]		
Wä	rmedurchgangswiderstand R	$T = R_{si} + \sum R_t + I$	₹ _{se}	6,059	[m²K/W]		
Wä	rmedurchgangskoeffizient U	= 1 / R _T		0,17	[W/m ² K]		

U-Wert Berechnung

Projekt:	WHA Guntramsdorf - Haus 5_F	ertigstellung	Blatt-Nr.:	4
Auftraggebei	r heimbau Gemeinn. Bau-, Wohr	nungs- u.	Bearbeitungsnr.:	1246
Bauteilbezeic AW04 Auße	chnung: enwand WDVS STB	Kurzbezeichnung: AW06		
Bauteiltyp: b		•		A
Wärmedurc	hgangskoeffizient berechnet nach ÖN	ORM EN ISO 6946		
	U - Wert	0,15 [W/m²K]		
				M 1 : 10

Struktionsaufbau und Berechnung Baustoffschichten von innen nach außen					
			_		
von innen nach außen			d	λ	$R = d / \lambda$
			Dicke	Leitfähigkeit	Durchlaßw.
Bezeichnung			[m]	[W/mK]	[m²K/W]
nnenputz		В	0,015	0,700	0,021
STB-Wand (It. Statik), mind.		В	0,200	2,300	0,087
Kleber		В	0,005	0,000	
EPS-F Dämmplatte, WL=0,031 W/mK		В	0,200	0,031	6,452
ggf. Dübel versenkt		В		0,000	
<u>, </u>		В	0,005	0,800	0,006
Silikat-/Silikonharzputz (geprüftes Putzsysten	า)	В	0,002	0,800	0,003
e des Bauteils [m]			0,427		
me der Wärmeübergangswiderstände	R _{si} +R _{se}			0,170	[m²K/W]
medurchgangswiderstand		$\Sigma R_t + F$	₹ _{se}	6,739	[m ² K/W]
medurchgangskoeffizient	U = 1 / R _T			0,15	[W/m ² K]
	Bezeichnung nnenputz STB-Wand (lt. Statik), mind. Kleber EPS-F Dämmplatte, WL=0,031 W/mKggf. Dübel versenkt Spachtelung diffusionsoffen/ Textilglasgeweb Silikat-/Silikonharzputz (geprüftes Putzsysten e des Bauteils [m]	Bezeichnung nnenputz STB-Wand (lt. Statik), mind. Kleber EPS-F Dämmplatte, WL=0,031 W/mKggf. Dübel versenkt Spachtelung diffusionsoffen/ Textilglasgewebe Silikat-/Silikonharzputz (geprüftes Putzsystem) e des Bauteils [m] Imme der Wärmeübergangswiderstände R si + R se medurchgangswiderstand R T = R si +	Bezeichnung nnenputz B STB-Wand (lt. Statik), mind. Kleber B EPS-F Dämmplatte, WL=0,031 W/mK Bggf. Dübel versenkt B Spachtelung diffusionsoffen/ Textilglasgewebe B Silikat-/Silikonharzputz (geprüftes Putzsystem) B des Bauteils [m] Imme der Wärmeübergangswiderstände $R_{si} + R_{se}$ medurchgangswiderstand $R_{T} = R_{si} + \sum R_{t} + R_{t}$	Bezeichnung nnenputz B 0,015 STB-Wand (lt. Statik), mind. Kleber B 0,005 EPS-F Dämmplatte, WL=0,031 W/mK B 0,200 ggf. Dübel versenkt B Spachtelung diffusionsoffen/ Textilglasgewebe B 0,005 Silikat-/Silikonharzputz (geprüftes Putzsystem) B 0,002 e des Bauteils [m] $0,427$ Imme der Wärmeübergangswiderstände $R_{si} + R_{se}$ medurchgangswiderstand $R_{T} = R_{si} + \sum R_{t} + R_{se}$	Bezeichnung [m] [W/mK] nnenputz B 0,015 0,700 STB-Wand (lt. Statik), mind. B 0,200 2,300 Kleber B 0,005 0,000 EPS-F Dämmplatte, WL=0,031 W/mK B 0,200 0,031ggf. Dübel versenkt B 0,000 Spachtelung diffusionsoffen/ Textilglasgewebe B 0,005 0,800 Silikat-/Silikonharzputz (geprüftes Putzsystem) B 0,002 0,800 e des Bauteils [m] 0,427 Imme der Wärmeübergangswiderstände $R_{si} + R_{se}$ 0,170 medurchgangswiderstand $R_{T} = R_{si} + \sum R_{t} + R_{se}$ 6,739

U-Wert Berechnung

WHA Guntramsdorf - Haus 5_Fertigstellung

Pro	Projekt: WHA Guntramsdorf - Haus 5_Fertigstellung		Blatt-Nr.	.:	5
Auf	traggeber heimbau Gemeinn. Bau-, Wohn ı	ungs- u.	Bearbei	tungsnr.:	1246
	iteilbezeichnung: 01 Trennwand zu Fahrrad/KIWA	Kurzbezeichnung:			
Bauteiltyp: bestehend Wand zu sonstigem Pufferraum Wärmedurchgangskoeffizient berechnet nach ÖNORM EN ISO 6946			ı	A	
	U - Wert	0,32 [W/m²K]			
					M 1 : 10
Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	STB-Wand (lt. Statik), mind.	В	0,200	2,300	0,087
2	WW-MW Mehrschichtdämmplatte,	В		0,000	
3	z.B. TEKTALAN E31-035/2, 100 mm, WL=0,036	W/mK B	0,100	0,036	2,778
Dic	ke des Bauteils [m]		0,300		

R_{si}+R_{se}

 $U = 1/R_T$

 $R_T = R_{si} + \sum R_t + R_{se}$

Summe der Wärmeübergangswiderstände

Wärmedurchgangswiderstand

Wärmedurchgangskoeffizient

0,260

3,125

0,32

[m²K/W]

[m²K/W]

[W/m²K]

U-Wert Berechnung

Projekt:	WHA Guntram	sdorf - Haus 5_F	ertigstellung	Blatt-Nr.:	6
Auftraggeber heimbau Gemeinn. Bau-, Wohnungs- u.			Bearbeitungsnr.:	1246	
Bauteilbezei	chnung: e über Außenluft H	5-H6	Kurzbezeichnung:	7//////////////////////////////////////	
Bauteiltyp: b Außendeck	estehend e, Wärmestrom nac	ch unten	•	**** ********************************	Warret oran
Wärmedurc	hgangskoeffizient	berechnet nach ÖN	ORM EN ISO 6946		
		U - Wert	0,16 [W/m²K]		
					A M1:20

Konstruktionsaufbau und Berechnung						
	Baustoffschichten		d	λ	$R = d / \lambda$	
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m ² K/W]	
1	Bodenbelag	В	0,010	0,000		
2	ZE-Estrich schwimmend gem. ÖN B 3732	В	0,055	1,400	0,039	
3	Trennlage 0,2 mm PE-Folie, Stöße verklebt	В		0,000		
4	EPS-T Dämmplatte, s'<20 MN/m³ (WL = 0,04 W/mK)	В	0,030	0,040	0,750	
5	ggf. Dampfbremse, s(d) > 50 m, Stöße verkl.	В		0,000		
6	EPS-Granulat zementgebunden (Installationsebene)	В	0,075	0,000		
7	STB-Massivdecke (lt. Statik), mind.	В	0,200	2,300	0,087	
8	Kleber	В	0,005	0,000		
9	MW-PT Putzträgerplatte	В	0,200	0,040	5,000	
10	ggf. Dübel versenkt	В		0,000		
11	Spachtelung diffusionsoffen/ Textilglasgewebe	В	0,005	0,800	0,006	
12	Silikat-/Silikonharzputz (geprüftes Putzsystem)	В	0,002	0,800	0,003	
Dic	ke des Bauteils [m]		0,582			
Su	mme der Wärmeübergangswiderstände R _{si} + R _{se}			0,210	[m²K/W]	
Wä	rmedurchgangswiderstand $R_T = R_{si} +$	Σ R _t +	R _{se}	6,095	[m ² K/W]	
Wä	rmedurchgangskoeffizient $U = 1 / R_T$			0,16	[W/m ² K]	

U-Wert Berechnung

Projekt: WHA Guntramsdorf - Haus 5_F	ertigstellung	Blatt-Nr.:	7
Auftraggeber heimbau Gemeinn. Bau-, Wohn	Bearbeitungsnr.: 124	46	
Bauteilbezeichnung: FB01.1 Decke über Außenluft H5-H6_UZ_x01	Kurzbezeichnung: DD02	I	F/3
Bauteiltyp: bestehend Außendecke, Wärmestrom nach unten	Aux Winesper S. 199	₩ 7 ///	
Wärmedurchgangskoeffizient berechnet nach ÖNG			
U - Wert	0,18 [W/m²K]		∑
		A M1::	20

					101 1 . 20
Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Bodenbelag	В	0,010	0,000	
2	ZE-Estrich schwimmend gem. ÖN B 3732	В	0,055	1,400	0,039
3	Trennlage 0,2 mm PE-Folie, Stöße verklebt	В		0,000	
4	EPS-T Dämmplatte, s´<15 MN/m³ (WL = 0,04 W/m	K) B	0,030	0,040	0,750
5	Dampfbremse s(d) > 100 m, luftdicht verklebt	В	0,001	0,000	
6	EPS-Granulat gebunden, WL<0,05 W/mK	В	0,075	0,050	1,500
7	z.B. THERMOTEC BEPS-WD 70N rapid	В		0,044	
8	STB-Massivdecke (lt. Statik), mind.	В	0,300	2,300	0,130
9	Kleber	В	0,005	0,000	
10	MW-PT Putzträgerplatte, WL=0,036 W/mK	В	0,100	0,036	2,778
11	ggf. Dübel versenkt	В		0,000	
12	Spachtelung diffusionsoffen/ Textilglasgewebe	В	0,005	0,800	0,006
13	Silikat-/Silikonharzputz (geprüftes Putzsystem)	В	0,002	0,800	0,003
Dic	ke des Bauteils [m]		0,583		
			<u> </u>		
Sui	mme der Wärmeübergangswiderstände R _{si} +	R se		0,210	[m²K/W]
Wä		$=R_{si}+\sum R_t+I$	R _{se}	5,416	[m²K/W]
Wä		I / R _T		0,18	[W/m²K]

U-Wert Berechnung

Projekt: WHA Guntramsdorf - Haus 5_I	ertigstellung	Blatt-Nr.:	8
Auftraggeber heimbau Gemeinn. Bau-, Woh	Bearbeitungsnr.: 124	16	
Bauteilbezeichnung: FB03 Decke über Tiefgarage H5-H6	Kurzbezeichnung: ID01		
Bauteiltyp: bestehend Decke zu geschlossener Tiefgarage	110 - THE PARTY P. S.C. C. 1472-117	:	
Wärmedurchgangskoeffizient berechnet nach ÖN			
U - Wert	0,18 [W/m²K]		7
		A M1:2	20

				IVI I . ZU			
Konstruktionsaufbau und Berechnung							
Baustoffschichten		d	λ	$R = d / \lambda$			
von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.			
Bezeichnung		[m]	[W/mK]	[m²K/W]			
Bodenbelag	В	0,010	0,000				
ZE-Estrich schwimmend gem. ÖN B 3732	В	0,055	1,400	0,039			
Trennlage 0,2 mm PE-Folie, Stöße verklebt	В		0,000				
EPS-T Dämmplatte, s´<20 MN/m³ (WL = 0,04 W/mK)	В	0,030	0,040	0,750			
ggf. Dampfbremse, s(d) > 50 m, Stöße verkl.	В		0,000				
EPS-Granulat zementgebunden (Installationsebene)	В	0,075	0,000				
STB-Massivdecke (It. Statik), mind.	В	0,200	2,300	0,087			
Mineraldämmplatte, z.B. MULTIPOR DI (WL = 0,042 W/mK)	В	0,180	0,042	4,286			
ke des Bauteils [m]		0,550					
mme der Wärmeübergangswiderstände R _{si} + R _{se}			0,340	[m²K/W]			
		R _{se}	5,502	[m²K/W]			
rmedurchgangskoeffizient $U = 1 / R_T$			0,18	[W/m²K]			
	Baustoffschichten von innen nach außen Bezeichnung Bodenbelag ZE-Estrich schwimmend gem. ÖN B 3732 Trennlage 0,2 mm PE-Folie, Stöße verklebt EPS-T Dämmplatte, s'<20 MN/m³ (WL = 0,04 W/mK) ggf. Dampfbremse, s(d) > 50 m, Stöße verkl. EPS-Granulat zementgebunden (Installationsebene) STB-Massivdecke (It. Statik), mind. Mineraldämmplatte, z.B. MULTIPOR DI (WL = 0,042 W/mK) ke des Bauteils [m] mme der Wärmeübergangswiderstände R si + R se rmedurchgangswiderstand R T = R si + Σ	Baustoffschichten von innen nach außen Bezeichnung Bodenbelag ZE-Estrich schwimmend gem. ÖN B 3732 B Trennlage 0,2 mm PE-Folie, Stöße verklebt B EPS-T Dämmplatte, s'<20 MN/m³ (WL = 0,04 W/mK) B ggf. Dampfbremse, s(d) > 50 m, Stöße verkl. B EPS-Granulat zementgebunden (Installationsebene) B STB-Massivdecke (It. Statik), mind. B Mineraldämmplatte, z.B. MULTIPOR DI (WL = 0,042 W/mK) Ke des Bauteils [m] mme der Wärmeübergangswiderstände R si + R se rmedurchgangswiderstand R T = R si + \(\Sigma R \) + I	Baustoffschichtendvon innen nach außenDickeBezeichnung[m]BodenbelagB0,010ZE-Estrich schwimmend gem. ÖN B 3732B0,055Trennlage 0,2 mm PE-Folie, Stöße verklebtBEPS-T Dämmplatte, s´<20 MN/m³ (WL = 0,04 W/mK)	Baustoffschichtendλvon innen nach außenDickeLeitfähigkeitBezeichnung[m][W/mK]BodenbelagB0,0100,000ZE-Estrich schwimmend gem. ÖN B 3732B0,0551,400Trennlage 0,2 mm PE-Folie, Stöße verklebtB0,000EPS-T Dämmplatte, s´<20 MN/m³ (WL = 0,04 W/mK)			

U-Wert Berechnung

Projekt: WHA Guntramsdorf - Haus	5_Fertigstellung	Blatt-Nr.:	9
Auftraggeber heimbau Gemeinn. Bau-, W	/ohnungs- u.	Bearbeitungsnr.:	1246
Bauteilbezeichnung: FB05 Decke über unbeh. Räumen im EG	Kurzbezeichnung:		
Bauteiltyp: bestehend Fußboden zu sonstigem Pufferraum (nach un	iten)	4% 2,7%	M d v t in d
Wärmedurchgangskoeffizient berechnet nach	n ÖNORM EN ISO 6946		
U - Wert	0,25 [W/m ² K]		$\bigvee\bigvee\bigvee$
		<i>A</i>	M 1:20

Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Bodenbelag	В	0,010	0,000	
2	ZE-Estrich schwimmend gem. ÖN B 3732	В	0,055	1,400	0,039
3	Trennlage 0,2 mm PE-Folie, Stöße verklebt	В		0,000	
4	EPS-T Dämmplatte, s´<20 MN/m³ (WL = 0,04 W/mK)	В	0,030	0,040	0,750
5	ggf. Dampfbremse, s(d) > 50 m, Stöße verkl.	В		0,000	
6	EPS-Granulat zementgebunden (Installationsebene)	В	0,075	0,000	
7	STB-Massivdecke (It. Statik), mind.	В	0,200	2,300	0,087
8	Mineraldämmplatte, z.B. MULTIPOR DI (WL = 0,042 W/mK)	В	0,120	0,042	2,857
Dic	ke des Bauteils [m]		0,490		
Sui	mme der Wärmeübergangswiderstände R _{si} + R _{se}			0,340	[m²K/W]
Wä	rmedurchgangswiderstand $R_T = R_{si} + \Sigma$	$R_t + F$	₹ _{se}	4,073	[m²K/W]
Wä	rmedurchgangskoeffizient $U = 1 / R_T$			0,25	[W/m ² K]

U-Wert Berechnung

WHA Guntramsdorf - Haus 5_Fertigstellung

Projekt:	WHA Guntramsdorf - Haus 5_Fe	ertigstellung	Blatt-Nr.:	10
Auftraggeber	heimbau Gemeinn. Bau-, Wohn	ungs- u.	Bearbeitungsnr.:	1246
Bauteilbezeid FB06 Gesch	chnung: noßdecke H5-H6	Kurzbezeichnung: ZD03	I	
Bauteiltyp: be warme Zwis			अंदर्शियी उन्ह	B.:
Wärmedurc	hgangskoeffizient berechnet nach ÖNC	ORM EN ISO 6946		

U - Wert

0,88 [W/m²K]

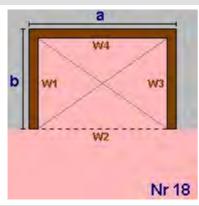
Koı	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Bodenbelag	В	0,010	0,000	
2	ZE-Estrich schwimmend gem. ÖN B 3732	В	0,055	1,400	0,039
3	Trennlage 0,2 mm PE-Folie, Stöße verklebt	В		0,000	
4	EPS-T Dämmplatte, s´<20 MN/m³ (WL = 0,04 W/mł	<) B	0,030	0,040	0,750
5	ggf. Dampfbremse, s(d) > 50 m, Stöße verkl.	В		0,000	
6	EPS-Granulat zementgebunden (Installationsebene	e) B	0,075	0,000	
7	STB-Massivdecke (It. Statik), mind.	В	0,200	2,300	0,087
Dic	ke des Bauteils [m]		0,370		
Su	mme der Wärmeübergangswiderstände R _{si} +	·R se		0,260	[m²K/W]
Wä	rmedurchgangswiderstand R_T =	$R_{si} + \sum R_t + F$	₹ _{se}	1,136	[m ² K/W]
Wä	rmedurchgangskoeffizient U = 1	/R _T		0,88	[W/m ² K]

U-Wert Berechnung

WHA Guntramsdorf - Haus 5_Fertigstellung

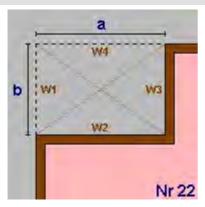
Projekt: WHA Guntramsdorf - Haus 5_Fe	ertigstellung	Blatt-Nr.: 1	1
Auftraggeber heimbau Gemeinn. Bau-, Wohn	ungs- u.	Bearbeitungsnr.: 124	6
Bauteilbezeichnung: FD02 Flachdach H5-H6_GFDD	Kurzbezeichnung: FD03	A SANCESHANAS	
Bauteiltyp: bestehend Außendecke, Wärmestrom nach oben			
Wärmedurchgangskoeffizient berechnet nach ÖNC U - Wert	ORM EN ISO 6946 0,10 [W/m²K]		

Kor	nstruktionsaufbau und Berechnung				
	Baustoffschichten		d	λ	$R = d / \lambda$
	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Kiesschüttung 32/16 mm gewaschen	В *	0,080	0,000	
2	Randzonen (Windsog) Kies verfestigt	В *	0,005	0,000	
3	PP-Kunstfaservlies diffusionsoffen	В *		0,000	
4	Dachabdichtung gem. ÖN B 3691	В *	0,010	0,000	
5	Zusatzmaßnahmen It. ÖN B 3691 berücksichtigen	В		0,000	
6	EPS-W Gefälledämmplatte, WL=0,036 W/mK, i.M.	В	0,363	0,036	10,08
7	Dampfsperre s(d) > 1500 m, zB: E-AL-40K	В	0,005	0,000	
8	vollflächig verklebt	В		0,000	
9	STB-Massivdecke (It. Statik), mind.	В	0,200	2,300	0,087
wäi	metechnisch relevante Dicke des Bauteils [m]		0,568		•
Dic	ke des Bauteils [m]		0,663		
		'			
Sur	mme der Wärmeübergangswiderstände R _{si} + F	₹ _{se}		0,140	[m²K/W]
Wä		$R_{si} + \sum R_t + F$	₹ _{se}	10,30	[m ² K/W]
Wä	rmedurchgangskoeffizient U = 1 /	R _T		0,10	[W/m ² K]


^{*...} diese Schicht zählt nicht zur Berechnung

M 1:20

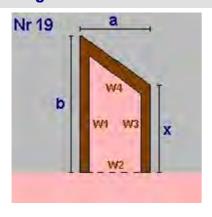
Geometrieausdruck


WHA Guntramsdorf - Haus 5_Fertigstellung

EG gf


```
a = 17,72
               b = 11,87
lichte Raumhöhe = 2,60 + obere Decke: 0,37 => 2,97m
BGF
          210,34m² BRI
                            624,70m<sup>3</sup>
           35,25m² AW01 AW01 Außenwand WDVS HLZ
Wand W1
Wand W2
           52,63m<sup>2</sup> AW02 AW02 Feuermauer
           32,88m<sup>2</sup> AW01 AW01 Außenwand WDVS HLZ
Wand W3
          Teilung 0,80 x 2,97 (Länge x Höhe)
            2,38m² AW06 AW04 Außenwand WDVS STB
Wand W4
           52,63m<sup>2</sup> AW03 AW01.1 Außenwand WDVS EG Durchfahrt
Decke
          210,34\text{m}^2 ZD03 FB06 Geschoßdecke H5-H6
Boden
          210,34m<sup>2</sup> ID01 FB03 Decke über Tiefgarage H5-H6
```

EG rf



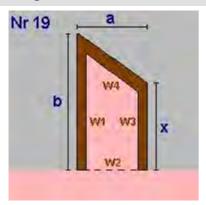
		= 4,09 = 2,60 + obere Decke: 0,37 => 2,97m BRI -48,71m ³
Wand W2	•	AW01 AW01 Außenwand WDVS HLZ IW01 IW01 Trennwand zu Fahrrad/KIWA IW01
Wand W4 Decke Boden	-16,40m²	AW03 AW01.1 Außenwand WDVS EG Durchfahrt ZD03 FB06 Geschoßdecke H5-H6 ID01 FB03 Decke über Tiefgarage H5-H6

EG Summe

EG Bruttogrundfläche [m²]: 193,94 EG Bruttorauminhalt [m³]: 575,99

OG1 gf


```
Von OG1 bis OG2
                   = 16,11
a = 17,72
                b
x = 15,44
lichte Raumhöhe = 2,60 + obere Decke: 0,37 => 2,97m
          279,53m<sup>2</sup> BRI
                             830,21m³
Wand W1
            47,85m² AW01 AW01 Außenwand WDVS HLZ
Wand W2
           52,63m<sup>2</sup> AW02 AW02 Feuermauer
Wand W3
            45,86m<sup>2</sup> AW01 AW01 Außenwand WDVS HLZ
            52,67m<sup>2</sup> AW02 AW02 Feuermauer
Wand W4
          279,53m² ZD03 FB06 Geschoßdecke H5-H6
Decke
Boden
            61,19m² DD01 FB01 Decke über Außenluft H5-H6
           16,40m<sup>2</sup> ID02
Teilung
Teilung -193,94m<sup>2</sup> ZD03
             8,00m<sup>2</sup> DD02
Teilung
```


OG1 Summe

OG1 Bruttogrundfläche [m²]: 279,53 OG1 Bruttorauminhalt [m³]: 830,21

Geometrieausdruck

WHA Guntramsdorf - Haus 5_Fertigstellung

OG2 gf


```
Von OG1 bis OG2
a = 17,72
               b
                  = 16,11
x = 15,44
lichte Raumhöhe = 2,60 + obere Decke: 0,57 => 3,17m
          279,53m² BRI
                           885,56m³
Wand W1
           51,04m² AW01 AW01 Außenwand WDVS HLZ
Wand W2
           56,14m<sup>2</sup> AW02 AW02 Feuermauer
Wand W3
           48,91m<sup>2</sup> AW01 AW01 Außenwand WDVS HLZ
Wand W4
           56,18m² AW02 AW02 Feuermauer
          279,53m<sup>2</sup> FD03 FD02 Flachdach H5-H6_GFDD
Decke
Boden
        -279,53m<sup>2</sup> ZD03 FB06 Geschoßdecke H5-H6
```

OG2 Summe

OG2 Bruttogrundfläche [m²]: 279,53 OG2 Bruttorauminhalt [m³]: 885,56

EG Galerie

EG - Schacht -1,41 m²

OG1 Galerie

OG1 - Schacht -1,41 m²

OG2 Galerie

OG2 - Schacht -1,41 m²

Summe Reduzierung Bruttogrundfläche [m²]: -4,23

Deckenvolumen DD01

Fläche 61,19 m^2 x Dicke 0,58 $m = 35,61 m^3$

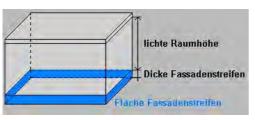
Deckenvolumen ID01

Fläche 193,94 m^2 x Dicke 0,55 m = 106,66 m^3

Deckenvolumen ID02

Fläche $16,40 \text{ m}^2 \text{ x Dicke } 0,49 \text{ m} = 8,04 \text{ m}^3$

Deckenvolumen DD02


Fläche $8,00 \text{ m}^2 \times \text{Dicke } 0,58 \text{ m} = 4,66 \text{ m}^3$

Bruttorauminhalt [m³]: 154,98

Geometrieausdruck

WHA Guntramsdorf - Haus 5_Fertigstellung

Fassadenstreifen - Automatische Ermittlung

Wand		Boden	Dicke	Länge	Fläche
AW01	_	DD01	0,582m	31,55m	18,36m²
AW01	_	ID01	0,550m	18,85m	10,37m²
AW02	-	DD01	0,582m	35,45m	20,63m²
AW02	-	ID01	0,550m	17,72m	9,75m²
AW03	-	ID01	0,550m	13,71m	7,54m²
IW01	-	ID01	0,550m	8,10m	4,46m²
AW06	-	ID01	0,550m	0,80m	0,44m²

Gesamtsumme Bruttogeschoßfläche [m²]: 748,77 Gesamtsumme Bruttorauminhalt [m³]: 2 446,74

Fenster und Türen WHA Guntramsdorf - Haus 5 Fertigstellung

Тур		Bauteil	Anz.	Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs
3		Prüfnorr	mmaß	3 Typ 1 (T1)	1,23	1,48	1,82	0,60	1,20	0,050	1,29	0,90		0,50	
3		Prüfnorr	mmaß	3 Typ 2 (T2) - Fenstertür	1,48	2,18	3,23	0,60	1,20	0,050	2,50	0,84		0,50	
3		Prüfnorr	mmaß	3 Typ 3 (T3) - Fenstertür	1,48	2,18	3,23	1,10	2,40	0,070	2,50	1,53		0,60	
											6,29				
horiz.															
3	OG2	FD03	1	BRE 1,20 x 1,20	1,20	1,20	1,44				1,01	1,90	2,74	0,60	0,75
			1		•		1,44				1,01		2,74		
NNO															
-157°															
3 T1	EG	AW01		1,48 x 2,25	1,48	2,25	3,33	0,60	1,20	0,050	2,59	0,83	2,77	0,50	0,75
3 T1	EG	AW01		1,53 x 2,25	1,53	2,25	3,44	0,60	1,20	0,050	2,69	0,83	2,85		0,75
3 T1	EG	AW01		3,28 x 2,25	3,28	2,25	7,38	0,60	1,20	0,050	5,92	0,81	6,00		0,75
T3	EG	AW01		1,40 x 2,25 ET	1,40	2,25	3,15	1,10	2,40	0,070	2,12	1,75	5,52	0,60	0,75
			4				17,30				13,32		17,14		
OSO 67°															
-67°	EG	AW01	1	1,72 x 1,40	1,72	1,40	2,41	0,60	1,20	0,050	1,78	0,87	2,09	0,50	0,75
3 T2	EG	AW01		0,92 x 2,29	0,92	2,29	6,32	0,60	1,20	0,050	4,45	0,91	5,75	0,50	0,75
T1	EG	AW01		1,49 x 1,40	1,49	1,40	2,09	0,60	1,20	0,050	1,51	0,88	1,84	0,50	0,75
T1	EG	AW01	1	2,09 x 1,40	2,09	1,40	2,93	0,60	1,20	0,050	2,21	0,85	2,49	0,50	0,75
T1	OG1	AW01	1	1,72 x 1,40	1,72	1,40	2,41	0,60	1,20	0,050	1,78	0,87	2,09	0,50	0,75
T2	OG1	AW01	4	0,92 x 2,29	0,92	2,29	8,43	0,60	1,20	0,050	5,93	0,91	7,66	0,50	0,75
T1	OG1	AW01	2	1,49 x 1,40	1,49	1,40	4,17	0,60	1,20	0,050	3,02	0,88	3,69	0,50	0,75
3 T1	OG1	AW01	1	2,17 x 1,40	2,17	1,40	3,04	0,60	1,20	0,050	2,30	0,85	2,58	0,50	0,75
3 T2	OG2	AW01	4	0,92 x 2,29	0,92	2,29	8,43	0,60	1,20	0,050	5,93	0,91	7,66	0,50	0,75
3 T1	OG2	AW01	1	1,72 x 1,40	1,72	1,40	2,41	0,60	1,20	0,050	1,78	0,87	2,09	0,50	0,75
3 T1	OG2	AW01	1	2,22 x 1,40	2,22	1,40	3,11	0,60	1,20	0,050	2,36	0,85	2,63	0,50	0,75
T1	OG2	AW01	2	1,49 x 1,40	1,49	1,40	4,17	0,60	1,20	0,050	3,02	0,88	3,69	0,50	0,75
			22				49,92				36,07		44,26		
WNW															
112°	EG	AW01	1	2,12 x 1,40	2,12	1,40	2,97	0,60	1,20	0,050	2,25	0,85	2,52	0,50	0,75
3 T2	EG	AW01		0,92 x 2,29	0,92	2,29	6,32	0,60	1,20	0,050	4,45	0,91	5,75		0,75
3	EG	IW01	1		1,05	2,05	2,15	-,	,	-,	,	1,70	2,56	,	,
3 T2		AW01		0,92 x 2,29	0,92	2,29	8,43	0,60	1,20	0,050	5,93	0,91	7,66	0,50	0,75
3 T1		AW01		1,88 x 1,40	1,88	1,40	2,63	0,60	1,20	0,050	1,97	0,86	2,26		0,75
T1		AW01	2	2,12 x 1,40	2,12	1,40	5,94	0,60	1,20	0,050	4,49	0,85	5,05	0,50	0,75
T1	OG1	AW01	1	0,78 x 1,40	0,78	1,40	1,09	0,60	1,20	0,050	0,68	0,99	1,08	0,50	0,75
T2	OG2	AW01	4	0,92 x 2,29	0,92	2,29	8,43	0,60	1,20	0,050	5,93	0,91	7,66	0,50	0,75
T1	OG2	AW01	1	1,88 x 1,40	1,88	1,40	2,63	0,60	1,20	0,050	1,97	0,86	2,26	0,50	0,75
3 T1	OG2	AW01	2	2,12 x 1,40	2,12	1,40	5,94	0,60	1,20	0,050	4,49	0,85	5,05	0,50	0,75
T1	OG2	AW01	1	0,78 x 1,40	0,78	1,40	1,09	0,60	1,20	0,050	0,68	0,99	1,08	0,50	0,75
21							47,62				32,84		42,93		
Summe 48							116,28								

Fenster und Türen WHA Guntramsdorf - Haus 5_Fertigstellung

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor Typ... Prüfnormmaßtyp B... Fenster gehört zum Bestand des Gebäudes

Rahmen WHA Guntramsdorf - Haus 5_Fertigstellung

Bezeichnung	Rb.re.	Rb.li.	Rb.o. m	Rb.u. m	%	Stulp Anz.		Pfost Anz.	Pfb.		V-Sp. Anz.	Spb.	
Typ 1 (T1)	0,100	0,100	0,100	0,130	29	7 (112.	•••	7 1112.	•••	7 (112.	7 1112.		KS-Rahmen
Typ 2 (T2)	0,100	0,100	0,100	0,130	23								KS-Rahmen
Тур 3 (Т3)	0,100	0,100	0,100	0,130	23								LM-Konstruktion
2,12 x 1,40	0,100	0,100	0,100	0,130	24								KS-Rahmen
0,92 x 2,29	0,100	0,100	0,100	0,130	30								KS-Rahmen
1,72 x 1,40	0,100	0,100	0,100	0,130	26								KS-Rahmen
0,92 x 2,29	0,100	0,100	0,100	0,130	30								KS-Rahmen
1,49 x 1,40	0,100	0,100	0,100	0,130	28								KS-Rahmen
2,09 x 1,40	0,100	0,100	0,100	0,130	24								KS-Rahmen
1,48 x 2,25	0,100	0,100	0,100	0,130	22								KS-Rahmen
1,53 x 2,25	0,100	0,100	0,100	0,130	22								KS-Rahmen
3,28 x 2,25	0,100	0,100	0,100	0,130	20			1	0,150				KS-Rahmen
1,40 x 2,25 ET	0,100	0,100	0,100	0,130	33			1	0,150				LM-Konstruktion
1,72 x 1,40	0,100	0,100	0,100	0,130	26								KS-Rahmen
2,17 x 1,40	0,100	0,100	0,100	0,130	24								KS-Rahmen
1,88 x 1,40	0,100	0,100	0,100	0,130	25								KS-Rahmen
2,12 x 1,40	0,100	0,100	0,100	0,130	24								KS-Rahmen
0,78 x 1,40	0,100	0,100	0,100	0,130	38								KS-Rahmen
2,22 x 1,40	0,100	0,100	0,100	0,130	24								KS-Rahmen

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m]

Stb. Stulpbreite [m] Pfb. Pfostenbreite [m] Typ Prüfnormmaßtyp H-Sp. Anz Anzahl der horizontalen Sprossen V-Sp. Anz Anzahl der vertikalen Sprossen Rahmenanteil des gesamten Fensters

Spb. Sprossenbreite [m]

Heizwärmebedarf Standortklima WHA Guntramsdorf - Haus 5_Fertigstellung

Heizwärmebedarf Standortklima (Guntramsdorf)

BGF $748,77 \text{ m}^2$ L_T 296,87 W/K Innentemperatur $20 \,^{\circ}\text{C}$ tau $144,30 \,^{\circ}\text{h}$ BRI $2446,74 \,^{\circ}\text{m}^3$ L_V $211,81 \,^{\circ}\text{W/K}$ a 10,019

Gesamt	365	196			26 938	19 220	13 657	9 716		22 434
Dezember	31	31	0,72	1,000	4 258	3 038	1 671	409	1,000	5 216
November	30	30	4,48	1,000	3 317	2 367	1 617	579	1,000	3 487
Oktober	31	25	9,91	0,987	2 228	1 590	1 650	1 125	0,813	848
September	30	0	15,30	0,527	1 004	716	852	867	0,000	0
August	31	0	18,88	0,110	247	177	183	241	0,000	0
Juli	31	0	19,39	0,055	134	96	91	138	0,000	0
Juni	30	0	17,53	0,223	529	377	360	546	0,000	0
Mai	31	0	14,37	0,520	1 244	887	868	1 261	0,000	0
April	30	20	9,83	0,935	2 173	1 550	1 513	1 754	0,664	303
März	31	31	4,97	0,999	3 319	2 368	1 670	1 374	1,000	2 643
Februar	28	28	0,90	1,000	3 810	2 718	1 509	886	1,000	4 133
Jänner	31	31	-1,17	1,000	4 675	3 336	1 671	535	1,000	5 805
			tempertur °C		verluste kWh	verluste kWh	Gewinne kWh	Gewinne kWh	zu Tage	kWh
Monat	Tage	Heiz- tage	Mittlere Außen-	Ausnut- zungsgrad	Transmissions- wärme-	Lüftungs- wärme-	nutzbare Innere	nutzbare Solare	Verhältnis Heiztage	Wärme- bedarf *)

 $HWB_{SK} = 29,96 \quad kWh/m^2a$

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Referenz-Heizwärmebedarf Standortklima WHA Guntramsdorf - Haus 5_Fertigstellung

Referenz-Heizwärmebedarf Standortklima (Guntramsdorf)

BGF 748,77 m² Innentemperatur 20 °C 296,87 W/K 144,30 h BRI 2 446,74 m³ 211,81 W/K 10,019

Gesamt	365	196			26 938	19 220	13 657	9 716		22 434
Dezember	31	31	0,72	1,000	4 258	3 038	1 671	409	1,000	5 216
November	30	30	4,48	1,000	3 317	2 367	1 617	579	1,000	3 487
Oktober	31	25	9,91	0,987	2 228	1 590	1 650	1 125	0,813	848
September	30	0	15,30	0,527	1 004	716	852	867	0,000	0
August	31	0	18,88	0,110	247	177	183	241	0,000	0
Juli	31	0	19,39	0,055	134	96	91	138	0,000	0
Juni	30	0	17,53	0,223	529	377	360	546	0,000	0
Mai	31	0	14,37	0,520	1 244	887	868	1 261	0,000	0
April	30	20	9,83	0,935	2 173	1 550	1 513	1 754	0,664	303
März	31	31	4,97	0,999	3 319	2 368	1 670	1 374	1,000	2 643
Februar	28	28	0,90	1,000	3 810	2 718	1 509	886	1,000	4 133
Jänner	31	31	-1,17	1,000	4 675	3 336	1 671	535	1,000	5 805
		90	tempertur		verluste kWh	verluste kWh	Gewinne kWh	Gewinne kWh	zu Tage	kWh
Monat	Tage	Heiz- tage	Mittlere Außen-	Ausnut- zungsgrad	Transmissions- wärme-	Lüftungs- wärme-	nutzbare Innere	nutzbare Solare	Verhältnis Heiztage	Wärme- bedarf *)

HWB_{Ref,SK} = 29,96 kWh/m²a

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Heizwärmebedarf Referenzklima WHA Guntramsdorf - Haus 5_Fertigstellung

Heizwärmebedarf Referenzklima

BGF 748,77 m² Innentemperatur 20 °C LT 296,87 W/K 144,30 h BRI 2 446,74 m³ 211,81 W/K 10,019

Gesamt	365	200			27 649	19 727	13 958	9 784		23 325
Dezember	31	31	0,19	1,000	4 375	3 122	1 671	422	1,000	5 404
November	30	30	4,16	1,000	3 386	2 416	1 617	564	1,000	3 620
Oktober	31	27	9,64	0,991	2 288	1 633	1 656	1 079	0,876	1 039
September	30	0	15,03	0,568	1 062	758	919	898	0,000	0
August	31	0	18,56	0,144	318	227	241	304	0,000	0
Juli	31	0	19,12	0,081	194	139	136	197	0,000	0
Juni	30	0	17,33	0,248	571	407	402	576	0,000	0
Mai	31	0	14,20	0,552	1 281	914	923	1 269	0,000	0
April	30	22	9,62	0,953	2 219	1 583	1 541	1 682	0,729	422
März	31	31	4,81	0,999	3 355	2 394	1 670	1 357	1,000	2 722
Februar	28	28	0,73	1,000	3 844	2 743	1 509	887	1,000	4 190
Jänner	31	31	-1,53	1,000	4 755	3 393	1 671	548	1,000	5 929
		ago	tempertur	Zungograd	verluste kWh	verluste kWh	Gewinne kWh	Gewinne kWh	zu Tage	kWh
Monat	Tage	Heiz- tage	Mittlere Außen-	Ausnut- zungsgrad	Transmissions- wärme-	Lüftungs- wärme-	nutzbare Innere	nutzbare Solare	Verhältnis Heiztage	Wärme- bedarf *)

HWB_{RK} = 31,15kWh/m²a

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

Referenz-Heizwärmebedarf Referenzklima WHA Guntramsdorf - Haus 5_Fertigstellung

Referenz-Heizwärmebedarf Referenzklima

BGF $748,77 \text{ m}^2$ L_T 296,87 W/K Innentemperatur $20 \,^{\circ}\text{C}$ tau $144,30 \,^{\circ}\text{h}$ BRI $2446,74 \,^{\circ}\text{m}^3$ L_V $211,81 \,^{\circ}\text{W/K}$ a 10,019

Gesamt	365	200			27 649	19 727	13 958	9 784		23 325
Dezember	31	31	0,19	1,000	4 375	3 122	1 671	422	1,000	5 404
November	30	30	4,16	1,000	3 386	2 416	1 617	564	1,000	3 620
Oktober	31	27	9,64	0,991	2 288	1 633	1 656	1 079	0,876	1 039
September	30	0	15,03	0,568	1 062	758	919	898	0,000	0
August	31	0	18,56	0,144	318	227	241	304	0,000	0
Juli	31	0	19,12	0,081	194	139	136	197	0,000	0
Juni	30	0	17,33	0,248	571	407	402	576	0,000	0
Mai	31	0	14,20	0,552	1 281	914	923	1 269	0,000	0
April	30	22	9,62	0,953	2 219	1 583	1 541	1 682	0,729	422
März	31	31	4,81	0,999	3 355	2 394	1 670	1 357	1,000	2 722
Februar	28	28	0,73	1,000	3 844	2 743	1 509	887	1,000	4 190
Jänner	31	31	-1,53	1,000	4 755	3 393	1 671	548	1,000	5 929
		lage	tempertur	Zurigograd	verluste kWh	verluste kWh	Gewinne kWh	Gewinne kWh	zu Tage	kWh
Monat	Tage	Heiz- tage	Mittlere Außen-	Ausnut- zungsgrad	Transmissions- wärme-	Lüftungs- wärme-	nutzbare Innere	nutzbare Solare	Verhältnis Heiztage	Wärme- bedarf *)

HWB $_{Ref,RK}$ = 31,15 kWh/m²a

^{*)} Wärmebedarf = (Verluste - nutzbare Gewinne) x (Verhältnis Heiztage zu Tage)

RH-Eingabe

WHA Guntramsdorf - Haus 5_Fertigstellung

			ı	
\Box	um	h • •		\sim
_ ~ ~				
ILL	чии			ш

Allgemeine Daten

Wärmebereitstellung gebäudezentral

<u>Abgabe</u>

Haupt Wärmeabgabe Radiatoren, Einzelraumheizer

Systemtemperatur 60°/35°

Regelfähigkeit Einzelraumregelung mit Thermostatventilen

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Verteilung

Leitungslänge

[m]

Verteilleitungen0,0Steigleitungen0,0Anbindeleitungen0,0

Speicher

Art des Speichers für händisch beschickte Heizungen

Standort nicht konditionierter Bereich

Baujahr ab 1994 Anschlussteile gedämmt

Nennvolumen 326 I freie Eingabe

Täglicher Bereitschaftsverlust Wärmespeicher q _{b,WS} = 3,03 kWh/d Defaultwert

Bereitstellung Standort nicht konditionierter Bereich

Bereitstellungssystem Flüssiger oder gasförmiger Brennstoff Heizgerät Brennwertkessel

Energieträger Gas

Modulierung mit Modulierungsfähigkeit Heizkreis gleitender Betrieb

Baujahr Kessel ab 2005

Nennwärmeleistung 39,00 kW freie Eingabe

Korrekturwert des Wärmebereitstellungssystems k_r = 0,75% Fixwert

Kessel bei Volllast 100%

Kesselwirkungsgrad entsprechend Prüfbericht $\eta_{100\%}$ = 92,6% Defaultwert

Kesselwirkungsgrad bei Betriebsbedingungen $\eta_{be,100\%} = 91,8\%$

Kessel bei Teillast 30%

Kesselwirkungsgrad entsprechend Prüfbericht $\eta_{30\%}$ = 98,6% Defaultwert

Kesselwirkungsgrad bei Betriebsbedingungen $\eta_{be,30\%} = 97.8\%$

Betriebsbereitschaftsverlust bei Prüfung $q_{bb,Pb} = 0.9\%$ Defaultwert

Hilfsenergie - elektrische Leistung

Umwälzpumpe110,89 WDefaultwertSpeicherladepumpe89,53 WDefaultwert

WWB-Eingabe

WHA Guntramsdorf - Haus 5 Fertigstellung

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Wärmeverteilu</u>	ıng ohne	<u>Zirkulation</u>		Leitungsläng	en It. Defaultw	verten
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]	
Verteilleitungen	Ja	3/3	Ja	14,79	0	
Steigleitungen	Ja	3/3	Ja	29,95	100	
Stichleitungen				119,80	Material Kur	ststoff 1 W/m

Wärmetauscher

wärmegedämmte Ausführung einschließlich Anschlussarmaturen Übertragungsleistung Wärmetauscher 126 kW Defaultwert

Hilfsenergie - elektrische Leistung

WT-Ladepumpe

447,63 W Defaultwert

Leitungen - Detail Eingabe WHA Guntramsdorf - Haus 5_Fertigstellung

Verteilleitungen

Gesamtenergieeffizienzfaktor gemäß ÖNORM H 5050:2014

WHA Guntramsdorf - Haus 5_I	Fertigstellung
Brutto-Grundfläche Brutto-Volumen Gebäude-Hüllfläche Kompaktheit charakteristische Länge (lc)	749 m ² 2 447 m ³ 1 218 m ² 0,50 1/m 2,01 m
HEB _{RK} HEB _{RK,26}	 55,9 kWh/m²a (auf Basis HWB_{RK} 31,2 kWh/m²a) 85,9 kWh/m²a (auf Basis HWB_{RK,26} 51,9 kWh/m²a)
HHSB ₂₆	16,4 kWh/m²a 16,4 kWh/m²a
EEB _{RK} EEB _{RK,26}	72,3 kWh/m²a $EEB_{RK} = HEB_{RK} + HHSB - PVE$ 102,3 kWh/m²a $EEB_{RK,26} = HEB_{RK,26} + HHSB_{26}$
f _{GEE}	$0,71 f_{GEE} = EEB_{RK} / EEB_{RK,26}$